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Green’s-function calculation of electron screening in a plasma
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Extensions to the finite temperature Green’s-function method for the calculation of equilibrium densities
within the Kohn-Sham formulation of density functional theory are presented. In particular, an expression for
the density in terms of single-particle Green’s-function differences summed over all Matsubara poles is uti-
lized. Numerical methods for the evaluation of this infinite sum are given. This formulation automatically
includes discrete as well as continuum states, is valid for finite temperatures, and is especially well suited for
high temperatures. Techniques are also presented for the calculation of single-particle Green’s functions for
spherically symmetric systems and arbitrary complex energies. The usefulness of these methods is demon-
strated by their application to the problem of electron screening of nuclei in a plasma. Direct comparison is
made with previous finite temperature, Kohn-Sham, wave function type calculations for protons and for neon
nuclei in an electron ga$S1063-651%99)07203-1

PACS numbdps): 52.20.Hv, 31.10t+z, 31.15.Ew

I. INTRODUCTION ever larger values of the complex energy.
Both of these difficulties are surmounted here. First, the

The Kohn-Sham formulatiof1] of density functional number of Green’s functions that are required is limited by
theory [2,3] is the modern day descendent of the Hartreeextrapolation and interpolation. An asymptotic expression
approximation{4]. The common goal of these approaches ishas been derived, which is employed to approximate the sum
to represent a solution to the many-body problem in terms off Green’s-function differences beyond the last Matsubara
single-particle wave functions which are acted upon by arPole for which they are calculated. Second, an approach for
effective potential. These wave functions are typically calcuthe evaluation of the high-lying Matsubara poles has been
lated as eigenfunctions of single-particle Satinger equa- developed. For large values of the complex energy, the dif-
tions, and their squares are summed to yield the density fderential equations are simplified from second to first order
the system. by writing the Green’s functions in terms of logarithmic de-

An alternative prescription for the evaluation of the den-fivatives. These deriyatives become increasingly smooth as
sity makes use of single-particle Green’s functigfg By  the complex energy increases.
definition these Green’s functions sum over all of the eigen- T0 demonstrate the method’s utility, the electron densities
functions for the system, both discrete and continuum. Thegpurrounding protons and neon nuclei embedded in an elec-
are expressed in terms of their spectral representation and af@n gas have been calculated for various temperatures and
calculated as the solutions of their defining differential equalectron densities. To demonstrate the method’s advantages,
tions. In this method, the density is given by an integral ofthe results are compared with previous Kohn-Sham, wave
the Green’s function along an appropriate contour in theunction calculations.
complex energy plane. It should be noted that the calculation

of the Green'’s functions involves _one-sided bOL_lndary valu_e Il. DENSITIES VIA CONTOUR INTEGRATION
problems only and doe_s not require the determination of ei- OF GREEN'S EUNCTIONS
genvalues or phase shifts. _

A variation of the Green’s-function method for finite tem- A. The electron density

peratures has been developed by Dederichs, Zeller, and their \aking use of the finite temperature generalization of
collaborators|6—8]|. Their approach is limited to relatively gensity functional theory due to Mermii0], the equilib-

low temperatures, however, due to its dependence on thg ; > . . !
Sommerfeld expansiof®] for the Fermi occupation factor. 'Wum densityp(r) of an interacting, many-electron system,

For the higher temperatures found in many astrophysical angct€d upon by an external potentigr), is expressed as
terrestrial systems, a different implementation of the
Green’s-function method is required. This is the subject of p(F):Z_ | i (1) |2F(e), 1)
the present work. !
In order to extend the method to higher temperatures, an
alternative contour in the complex energy plane is chosemwhere the single-particle wave functions satisfy
such that the density is given by a sum of differences in
Green'’s functions evaluated at all of the Matsubara poles. 1
This contour has been considered previod$lly but it was [— “V24 v (r)
not pursued due to two obstacles: the infinite number of 2
poles for which Green’s functions must be calculated and the
increasing difficulty in calculating the Green’s functions for and the effective potential is given by

bi()=edi(r), ()
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veff<F>=v<F>+f d3r'|§(_rr3| +odp(N]. () L

The Fermi occupation factor,

f(e)= (4

e(ffﬂ)/T_F 1’

depends on the temperatufeand chemical potentigl of

the electrons. The self-consistent solution of these equations

yields the equilibrium density. The sum in the expression for

the electron density is over the complete set of energy eigen-

values, bound and free. Depending on the temperature and

density, bound states may or may not exist. Note that .

throughout this work atomic units are used=e=%=kg FIG. 1. Contour enclosing the poles @{r,r’;z) at all of the

=1). energy eigenvalues for a nucleus in a finite temperature plasma. The
In the above expression, the exchange-correlation poterfit along the real axis of course extendsite: but does not con-

tial v, is the temperature dependent functional derivative offibute for largex in the differenceG—G which vanishes afz|

the exchange and correlation contributions to the grand po-"""

tential. For simplicity, the discussion here is limited to spin

X X X> <X X X

e |

symmetric systems and spin independent exchange- =S G ()
correlation potentials. G(r.r';z)=2 e @)
I
B. A nucleus in an electron gas Due to the completeness of the wave functions the Green’s

The following model is considered for the shielding of a function satisfies

nucleus with atomic numbeZ in a neutral plasma. The 1
nucleus is taken to be embedded in a positive jellium and — V240N —2z|G(r 1 ;2)=—83(r—1"). (8
surrounded by an electron gas with average dengjtyThe 2
jellium models the remaining nuclei in the plasma and has

charge density equal to the average electron density. . S . - .
r? yl d 1(F) whi hg he el y the Fermi factor, which is written explicitly as a function of
The external potential (r) which acts upon the electrons energy and chemical potential, is defined as

is due to the nucleus and the jellium. The effective potential
for this problem is thus G(F.F:2)=G(r.I":2)f(z ). 9)

For convenience, the product of the Green’s function and

— . Z
Ver(r)=——+

P(F')_Po , - i ; i i P
: f d3r +vxc[P(f)]—vgc- (5) The analytic structure of this function is shown in Fig. 1. It

Ir—r’| has poles at the energy eigenvalues with residues
_ _ (N @F(r)f(e ). Italso has poles at the Matsubara fre-
At distances far from the nucleus, the effective potential apgyencies,

proaches that of a uniform electron gago=v,J pg]. The

bar over the effective potential indicates that this residual zj=;ii77(2|j|—1)T, j=*1+2+3,... (10
exchange-correlation potential has been removed and that the

barred effective potential vanishes outside the range of thg;, residues—TG(F,F’;zj).

nucleus. The same subtraction is also appliedE) the eigen- The contourA in Fig. 1 encloses the poles at all of the
values of the single-particle Scldinger equationg and to  energy eigenvalues along the real axis, bound and free. As

the chemical potential of the electrops shown in Fig. 2, this contour can be deformed into the set of
The average density and the temperature fix the barredontoursB;, each of which encloses a Matsubara pole, plus
chemical potential in the usual way, the contourC at infinity. The integrals along these contours

are related as follows:
d3p 1
(2m)3 &P 2 w11

— N
po(T=y =2 ®)

fﬁ G(r.r';z)dz=—2, fﬁ G(r.r';z)dz+ é G(r.r';z)dz,
A i B; c
whereN is the number of electrons in a uniform electron gas (11
of volumeV, including a factor of 2 due to spin degeneracy. . o N .
where the minus sign is a result of the direction of integra-

tion around the Matsubara poles. The residue theorem can be
applied to yield

The single-particle Green'’s function associated with the
effective po_tentiabeﬁ can be written in terms of its spectral p(F)ZTE G(r.r: z)+ i é G(r,r:z)dz (12)
representation as ] mi Jc

C. The Green'’s functions
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z Ill. GREEN’S FUNCTIONS FOR SPHERICALLY
SYMMETRIC SYSTEMS

A. The radial Green’s functions

The Green'’s function for a spherically symmetric system
can be written as

©

G(r,r';z)= py— ;o (214+1)g(r,r";z)P,(cosy).

(15

For a given complex energy, a new notation is introduced for
the radial Green’s function,

91 r)=gi(r,r';z=«%2), (16)
FIG. 2. A set of contours equivalent to that of the previous
figure which encloses all of the Matsubara poles and which has where the complex wave number is defined as

contour at infinity. =\—-2z, Rdk]>0. The radial Green's functions are
taken to be

This expression includes a factor of 2 due to the spin sym-

metry of a finite temperature plasma, where all spin states are o ()X k() 1

occupied to some degree. 91117 = WL X (7

Note that the integrand does not vanish along the contour
C, and the Green’s functions for a uniform system are thereHere, P, is the Legendre polynomial of ordérandy is the
fore required to cancel this integral. angle betweerr andr’. The functionsy, , and x, , are

The uniform system in this case is simply a constant elecsolutions of the radial differential equations
tron gas of densityp, plus the jellium background. As a
result, its effective potential Y(r) is zero. For this uniform _d® I+ + oy 2| 1)

- ot 5t 2ven(r) Tk

system, a Green’s functio®)(r,r’;z) can be defined in dr? r2 X1,«(1)
analogy to Eq(7), and a functiorg ©)(r,r’;z) can similarly
be defined corresponding to E®). The density of the uni-
form system can then be expressed in the form of (Eg).

] =0, (19

which are regular at the origin and at largerespectively.
Since the above differential equation has no first-order de-
rivative, the Wronskian of its solutions,

D. The induced density via Green’s-function differences WL Xt =0 (DX (D) =8 (DX (r), (19

For large valueg of the complex energythe Green's g jndependent of. The radial Green’s function satisfies the
functionsG and G(¥ are equal, and the integrals over the inhomogeneous differential equation,

contourC are thus also equal. That the difference of the two

Green’s functions vanishes for large complex energies is| g2 (] +1)

shown in a later section of this paper. - 5
If the induced density is defined as dr r

+ 20 (1) + K2 Oi(r,r)==8(r—r’).

(20

Ap(r)=p(r)—p'(r), (13)
B. The radial Green’s functions in terms of known functions
then it is given by the foIIowing sum over Green's-function Depending on their Comp|ex energy, the radial Green's
differences: functions are calculated using two different methods. The
first approach makes use of known functions to remove the
. * . . dominant behaviors from the solutions of the radial equa-
Ap(N=4T2 REG(r,r;z)—-GO(r,r;z)]. (149  tions, ¢ , andy,,.
=1 Near the origin, the differential equations for the radial
solutions are dominated by the Coulomb potential of the
This result has been simplified using the relationpnycleus and by the centrifugal potential. Therefore, the prod-
G(r,r;z*)=G*(r,r;z), and it is restricted to spin degener- uct forms of the solutions in this region are taken to be
ate exchange-correlation potentials.

This expression for the density requires the Green’s- (D =Fi(7.0) % (1), (21)
function differences for values of the complex energy rang- .
ing from small to arbitrarily large. For systems such as a X|,K(r)=H|(+)(77.p)X|,K(r), (22

single nucleus in a plasma, the Green'’s functions are spheri-

cally symmetric. Techniques are presented in the next seahereF; andH(") are Coulomb wave functions of the first
tion which make possible the calculation of these Green’sand third kind[11,12, which are regular at the origin and at
functions for all values of the complex energy. larger, respectively, wheregy=iZ/«k, and where=i«r.
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Far from the origin, the screening of the electrons cause¥his transformation of a differential equation from second to
the effective potential to vanish. As a result, the radial solufirst order by means of the logarithmic derivative of its so-
tions there should be similar in form to those of a systemlutions is due to Riccafil6]. At the origin and at large they
with no central nucleus. The product forms of the solutionsbehave as
in this region are thus taken to be

D P (1) (I+1)/r for r—0
9,1 = P10 (1), (23 (%'K(r))q tx for |nrlm -
X"“(r):X'(?'z(r)m(r)' (24) (X(,K(r)) —1/r  for r—0
X|,K(r) - —k for |Kr|—>oo_ (31)

where zﬁff’,} andxff)K) are the radial solutions for the uniform

system. The uniform radial solutions satisfy E§i8) when  \yhereas the asymptotic forms of the radial solutions become
its eﬁe_zctlve potential is set to zero,_and they are related to th@qre and more oscillatory as the complex energy increases,
spherical Bessel functions of the first and third kiid, 13 {he |ogarithmic derivatives are more slowly varying in this

by limit, approaching values of «.
©) o The work required for the calculation of the logarithmic
() =rji(ixr), (25 derivatives is simplified in the same manner as is used for
small values of the complex energy. That is, the radial grid is
X2y =rh{V(ixr). (26)  divided into two regions, and the leading order behaviors of

the logarithmic derivatives in each region are extracted. This

For both regions, the barred functions are calculated byeaves well behaved functions to be calculated numerically.
numerical integration of the differential equations which fol-
low from the substitution of the above product forms into Eq. IV. EVALUATION OF THE DENSITY
(18). The Coulomb wave functions and spherical Bessel
functions, on the other hand, are evaluated using computer
routines[11,14 available from the CERN program library  For spherically symmetric systems, the density is ex-
[15]. panded in terms of contributions from the angular momen-

tum components of the Green’s functions,

A. The spherically symmetric density

C. The radial Green’s functions 12
in terms of logarithmic derivatives Ap(r)= = 2 Apy(r). (32)

As the complex energy values in E9) increase, the re1=0
methods of the preceding section become increasingly more
difficult to evaluate, and a second method for numericallySubstitution of the spherically symmetric Green’s function,
calculating the radial Green’s functions is needed. A newEd.(19), into the density expression, Ed4), shows that the
approach is introduced here which makes use of logarithmighduced density components are
derivatives and which becomes more efficienzéscreases.

This approach makes use of the following relationship 2021+1) &
between the logarithmic derivatives of the radial solutions, Ap(r)= — T]Zl RELAG ()], (33
le/l,K andXLK:
(X(,K(r)) _(lﬁ’,x(r)) _ WL o X1k 27) where
Xi.(1) (1) U (M) xy (1) AgI,K(r1r,):gI,K(r1r,)_g|(,0;2(rar/)- (34)

This expression follows from the definition of the Wronsk-
ian, Eq.(19), and its right hand side is just the reciprocal of
the radial Green'’s function evaluated forr’. The Green’s

function can therefore be calculated in terms of difference

As written, the induced density involves a sum of
Green’s-function differences evaluated for an infinite number
of Matsubara poles. In practice, the number of Green’s func-
L o Yions that can be calculated is finite, and extrapolation and
of logarithmic derivatives, interpolation are used to evaluate the complete sum.

, Let M be the index of the largest poig, for which the
(XI,K(”)_ (28) Green's functions are calculated. The sum of the Green’s
X1..(1) functions for poles beyond this maximum patg is ap-
proximated by extrapolation of an asymptotic expression for
Both logarithmic derivatives can be shown to satisfy thethe Green’s-function differences. This expression is derived

-1

gl,K(rvr):

'r/f(,K(r))
k(1)

nonlinear, first-order differential equation below.
d ( lM’K(I‘)) [(1+1) Do) o ( w,"K(r))z B. An asymptotic expression for the radial Green’s functions
- = Ver(r) + k2| — .
dri ¢ .(r) r2 of (1) The centrifugal and effective potentials in EQO) are

(29 combined to form a total potential
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I(1+1) D. Limiting the number of calculated Green’s functions
Vi(r)=

2 +2v0e(r). (35 The difference in Green’s functions is the quantity of in-
terest in this calculation. Since the asymptotic expression for

5 . the uniform radial Green’s functiog{%)(r,r) is just Eq.(38)

Letg, be the solution of E¢(20) for1the case where the total eyajuated with the total potential®, the radial Green’s-

potential V, is zero. This Green’s function has the well f,ction difference is given by

known form[17]

a(r) by(r) 1
e*K‘r*r'| Agl,K(rlr):_3+ 5 +O _7 ’ (39)
q e . 36) K K K
g.(r,r’) P (
where
The Born serie¢18] for the radial Green’s functiog, , in B
terms ofg,. can be written symbolically as a(r)= Eveﬁ(r), (40
K=~K+ ~KV~K+J fNKV~KV~K+"" 3 3 |(|+1)_ 1_17
R A RS R AT 7 D)= = 5| V241)+ w1} + Gol(D). (41

This expression can be evaluated for=r to give It should be noted that the leading order term in the

Green’s-function differences depends on the effective poten-

1 V() 3VEN - V() tial v and not on the total potentiad;. Taking the differ-
9= et 2 T 166 ence of the Green’s functions cancels their common centrifu-
gal barriers. This result shows that the difference of the
1 e 2« Green’s functions goes to zero more rapidly than the Green’s
+O(—7, 3 ) (38)  functions themselves. It also verifies the conjecture of Sec.
oK IID that the difference of the Green’s function vanishes

. . _ _ along the contouC, where the complex energy and thus

For the remainder of this discussion, terms of orderk go to infinity.
K_3e_2K_r, or less, are neglected. _ The sum of the Green’s-function differences beyond the

The first three terms in this expression can be used tfast Matsubara pole for which they are calculatgg,is ex-
approximate the radial Green’s function for large values oftrapolated using Eq(39) and the value calculated for the
k. Each term in the expression is smaller than the previougreen’s-function difference at,,. That is, the sum over
by a factor which is essentially of the order Wf(r)/x*>.  Green’s-function differences beyond the last calculated pole
Thus, the expression is only convergent for those values of is approximated by
where «? dominatesV,(r) in the differential equation. In

other words, for a giver value, Eq.(38) is a useful repre- *
sentation of the radial Green’s functiog, ., only in those ' % ) Re[Ag,ij(r,r)]

. . . . ~ =M+
regions where the differential equations fr, andg, are .
nearly the same, and hence whgre is accurately given by * a(r) by(r) c¢l(r;zy)
~ . ~ + N CY)
0. plus a few correction terms. =& Kj3 st Kj7

C. A previous expression where the coefficient, is determined from the Green's-

It should be noted that Kohn and Shdif] have also function difference aty ,

considered the Born series for Green's functions, B4,

for the case of a general one-dimensional poterigd). Agy . (r r):a(r) by(r) + ci(rizwm) (43)

Their result for the Green’s function differs from E@8) in M K Ky Ky

that it contains an extra term of order ¢, which depends on

the first derivative of the potential. The sum of the extrapolated Green’s-function differences in
The source of the derivatives in E(38) is the Taylor Eq. (42) is evaluated using the Euler-Maclaurin summation

expansion of the potentiad aboutr. It can be shown that the formula[20].

term coming from the first derivative gives a contribution to  Consider the choice ofy, . For particular values df and

the integrals in Eq(37) that is of orderx 3¢~ 2. Forlarge r, 1z, must be large enough that the asymptotic forms in

« this term is negligible, and the asymptotic expression forEq. (39) can be used to extrapolate the Green’s-function dif-

the radial Green’s function in E¢38) is therefore correct.  ferences. At lower temperature, the valueMbivill be much
The validity of Eq.(38) can also be demonstrated by ex- higher, because the separation of the poles is proportional to

plicit construction of the asymptotic form of the uniform T, Eq. (10). In general, then, the lower the temperature, the

radial Green's functiorgff),z(r,r) using known forms for the more poles that will be needed, and the more Green’s func-

spherical Bessel functions. tions which must be evaluated.
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In order to limit the number of poles for which Green's  TABLE |. Parameters used in Perrot's proton calculation. All
functions must be calculated, the sum of the radial values are in atomic units, wherp,=1.0 a.u. is equal to
Green’s-function differences up &, is also approximated 6.75 electrons A® andT=1.0 a.u.is equal to 3.2610° K. The
in this calculation. Specifically, the Green’s-function differ- chemical potentialy is calculated with the residual exchange-
ences are calculated for some of the poles and their valuerrelation potential removed.
for the remaining poles are determined by interpolation. This —
is feasible because the radial Green’s-function differences’s  t=T/Te Po T Te i
are very well behaved as functions of the complex energy
The interpolation scheme that is used most heavily weighs
those values of the complex energylose to the real axis.
For larger values of, the Green’s-function differences ap-

1.0 0.5 0.239 0.921 1.842 1.3685
1.0 1.0 0.239 1.842 1.842 —0.0395
2.0 0.239 3.683 1.842 —4.5329

proach their asymptotic forms and thus require fewer calcu- 20 0.5 0.0298 0230  0.460 0.34213
lated values for accurate interpolation. 2.0 1.0 0.0298 0460  0.460 —0.00988
Further details concerning the evaluation of the density 2.0 2.0 0.02908 0921 0460 -1.13323
are given elsewher21]. 4.0 0.5 0.00373 0.0575 0.1151 0.08553
4.0 1.0 0.00373 0.1151 0.1151 —0.00247
E. Asymptotic expressions for the logarithmic derivatives 4.0 2.0 0.00373  0.2302  0.1151 —0.28331

The analysis of the asymptotic forms for the logarithmic

derivatives of the radial solutions parallels that of the preced[Jsin the Green’s-function method. The second set contains
ing section. In this case, the asymptotic forms are Y '

the values due to Perrot.

o (1) Vi(r) V(1) In both cases, the local density approximati_on is mad_e for
( |« ) = A the temperature dependent exchange-correlation potential us-
(1) 2K 4k? ing a parametrization due to Perrot and Dharma-wardana
5 , [23]. The correlation contributions to the grand potential in
ViD= Vvir) L0 1 44 this parametrization are treated via the random phase ap-
8«3 p (44) proximation.
The inverse screening lengiy not to be confused with
and the wave vector, is introduced here for the purpose of com-
parison with Perrot. If the induced density is assumed to be
(m’,K(r)) Vi(r)  Vi(n) of the form
X1,.(1) 2k 4x? ZK?
Ap(r)zmefkr, (46)
L ViO-vie) | (1 s
8«3 k*)

then the total induced charge inside a sphere of raRiys
Note that most of these terms are of opposite sign, except for 2/ is
the first derivatives. As a check, these forms for the logarith-
mic derivatives can be substituted into the radial Green’s
function of Eq.(28) to reproduce its asymptotic form, EqQ. Ro
39 a.(28) to rep ymp d f Ap(r)4mr?dr=0.594. 47)
y 0
These expressions are used to speed the computation of
the logarithmic derivatives in those regions whéfgr) is

small compared tax. TABLE II. The induced electron density at the protamp(0)

and the inverse screening lengthcalculated using the Green’s-
function method, and the same quantities for the standard density

V. NUCLEI'IN AN ELECTRON GAS functional calculation due to Perrot.
A. A proton in an electron gas .
) _ _ ) This work Perrot

The Green’s-function method of this paper is now applied _ t Ap(0) Kk Ap(0) K
to the problem of the screening of nuclei in an electron gas-
Electron densities calculated using the Green's-function 1.0 0.5 0.853 1.633 0.841 1.623
method are compared with densities calculated using Kohn- 1.0 1.0 0.695 1.285 0.682 1.276
Sham wave function techniques. 1.0 2.0 0.498 0.922 0.486 0.928

For the case of the screening of a proton, comparison is 2.0 0.5 0.435 1.460 0.428 1.454
made with a calculation due to Perf@2]. The parameters 2.0 1.0 0.357 1.134 0.349 1.114
which were considered by Perrot are listed in Table I, and the 2.0 2.0 0.240 0.741 0.235 0.729
results from the two methods are shown in Table Il. The 4.0 0.5 0.335 1.426 0.338 1.426
induced electron density values at the origin are given, along 4.0 1.0 0.309 1.275 0.306 1.266
with the inverse screening length implied by the density dis- 4.0 2.0 0.232 0.878 0.222 0.839

tribution. The first set of values are the results calculated
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TABLE Ill. Parameters for which Friedel oscillations were TABLE IV. The induced electron density at the neon nucleus
found. The first node of the oscillatianygeis shown along with the  Ap(0) and the variableR,, R; for an electron gas with Wigner-
first induced density minimum, scaled by the average electron derSeitz radius ;= 2.0, calculated using the Green’s-function method
sity, Apmin/ po- The data are from the Green’s-function method andand the same quantities for the standard density functional calcula-

from Perrot. tion due to Perrot.
This work Perrot This work Perrot
Is t Iode APmin/lOO Iode APmin/po t AP(O) Ro Ry AP(O) Ro Ry
2.0 0.5 8.48 —1.25x10°° 10.7 -8.7x10°8 0.5 591.6 0.835 1.891
4.0 0.5 350 —7.55x10°2 3.48 —7.8x10°2 1.0 557.7 0.868 2.133 592.3 0.867 2.069
4.0 1.0 551 —2.00x10°3 5.56 —5.4x10°4 2.0 496.1 1.004 2.264 590.9 1.003 2.259

4.0 489.4 1.879  2.335 468.2 1.842  2.362

For each induced electron density, the valudrgfis deter-

mined by Perrot such that the above relationship is satisfieqai,s where the induced density is equal to half the average

This in turn defines an inverse screening length value for tha&ensity Ap(Ry) = po/2

der_ll_shlty. | lculated with the G s-functi i As with the results for the screening of a proton, the vari-
€ values calculated wi € Lreens-iunction me Odables describing the extent of the charge are in better agree-

can be seen to be in goqd agreement with those calculated_ l?Xent than the induced density values at the origin. The

Perrot. The agreement is stronger for the inverse screeni

; : agreement of the charge distribution results improves as the
length values than for the induced density values at the or?‘:sgg g P

gin, which are systematically greater in the Green’s—functionterm)eralture Is raised.
calculation. The induced density at the origin does not make
significant contributions to the total Coulomb potential of the
electrons. Its exact value there is less important than the
density values away from the origin. In a Kohn-Sham wave function type calculation, the ra-
At low temperatures, the electron density around the prodial components of the single-particle eigenfunctions are
ton exhibits Friedel oscillationg24]. The effect is strongest found as solutions of the single-particle Safirmer equa-
at zero temperature where there is a sharp cutoff in allowetlon, Eq.(2). In the case of nuclei with large atomic numbers,
momentum at the Fermi energy, in which case a smootlthere are many bound states to be found. In addition, for all
density distribution cannot be formed. As the temperature isiuclei there are shallow bound states at high temperatures
increased, the oscillations disappear. The parameters fand low densities.
which Friedel oscillations were found to exist can be seen in The first difficulty presented by bound states is that they
Table 1ll. The oscillations were exhibited for the same pa-must be found. Since many of the eigenvalues can have
rameters in both the Green’s-function calculation and in Persmall occupation factors, determining them can be difficult.
rot's. The quantityr ,,4 iS the first node in the induced den- A second problem posed by bound states stems from the fact
sity, i.e., the first point where the induced density is zero. that the density must be iterated until a self-consistent solu-
As shown in Table Ill, the positions of the first nodes aretion is found. In Perrot's neon calculation, for example,
in good agreement far;=4.0. The induced density values at bound states were found to pop in and out of the continuum
the first minimumaA p,in/po are also similar for;=4.0 and as the effective potential varied.
t=0.5. Note that the other two minimums occur further out Bound states pose no such problem in the Green's-
in the tail, where the induced density is small relative to thefunction method. The single-particle Green’s function de-
average value. If the induced density at each minimum idined in Eq.(7) contains bound and continuum wave func-
compared to the induced density at the origin, their relativdions by construction. Thus, the bound states are included
values are even smaller. Differences in the values calculategutomatically with every iteration, and they do not need to be
with the two methods in this region are not significant. found separately before they can be included in the result for
the density.
An interesting question to ask with regards to the iteration
of the density and the Green’s-function method is if the hop-
The screening of a neon nucleus in an electron gas hasing of loosely bound states in and out of the continuum can
also been studied by Perrd@5]. The larger charge of neon, lead to the same numerical problems described by Perrot.
Z=10, makes for more polarization and a more stringent tesThe answer has been given by Kohn and Majum@,
of the Green’s-function method. who showed that the properties of a Fermi gas, such as the
The induced electron density values at the origin aredensity, are smooth or analytic for just such a transition of a
shown in Table IV along with two quantitieR, and R, state from bound to unbound. The instabilities in Perrot's
which measure the charge distribution around the nucleugalculation might therefore be attributed to the difficulties of
The first set of numbers are those calculated with thdocating all of the bound states for each iteration.
Green’s-function method, and the second set was calculated Not only are bound states handled easily with the
by Perrot. The quantityr, was defined in Eq(47) as the  Green’'s-function method, but high temperatures are also not
radius of a sphere containing charge 0B4%or the neon a problem. In a standard Kohn-Sham calculation, the expres-
calculation, Perrot defined a new varialite, which is the sion for the density includes an integral over continuum

C. The method has no problems with bound states
or high temperatures

B. A neon nucleus in an electron gas
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wave functions. In order to evaluate the density at highedensities is effected by extrapolation and interpolation.
temperatures, the number of wave vectors for which the conBound states are automatically included, which eliminates
tinuum wave functions must be calculated increases. Furthethe numerical instabilities in wave function methods.
more, the calculation of the wave functions becomes more For complex energies close to the real axis, the inner and
difficult as the wave functions become more oscillatory.outer factors of the Green’s function are obtained by direct
Thus, for a traditional wave function type calculation, higherintegration. For energies far from the real axis, logarithmic
temperatures equate to more work, which puts practical limderivatives of the factors are calculated, which is all that is
its on the temperature range where the method can be usesquired for the evaluation of the density. These logarithmic
For the Green’'s-function method, on the other handderivatives satisfy first-order differential equations and are
higher temperatures present no such obstacles. Larger temmooth functions which actually become better behaved as
peratures mean a greater distance between Matsubara polds complex energy increases in magnitude. This obviates
Eq. (10), which makes for faster convergence of the sumthe problem of rapidly oscillating functions in the wave func-
over these poles in EQq(33). In addition, the Green’'s- tion formulation. The method is applicable to all tempera-
function method avoids the difficulties of rapidly oscillating tures, and converges especially well at high temperatures.
solutions by the use of logarithmic derivatives of the radial Numerical results are presented for protons and neon nu-
solutions, Eq(28). The larger the complex wave number  clei. Comparisons to earlier works by Perrot using a wave
the more well behaved the logarithmic derivatives becomefunction formulation are given.

Egs.(30) and(31). An important application of the method is evaluation of
the effect of shielding on thermonuclear fusion rates in labo-
VI. SUMMARY AND CONCLUSIONS ratory and stellar plasmas. A papg7] is in preparation

giving results for the solar core; it also incorporates the effect

The screening of nuclei by electrons in a finite temperayf shielding by the other positive nuclear constituents in the
ture plasma is considered using the Kohn-Sham formulatiopasma,

of density functional theory, with a local density term to
describe exchange and correlation.

Rather than calculating single-particle wave functions, the
problem is developed in terms of Green’s functions which
are evaluated at Matsubara poles lying along a line parallel One of us(L.W.) wishes to acknowledge a discussion
to the imaginary axis. A finite number of poles is evaluatedwith J. S. Cohen, LANL, which stimulated interest in the
and the infinite sum required for the calculation of electronproblem. The work was supported by a U.S. DOE grant.
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