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Green’s-function calculation of electron screening in a plasma

M. J. Watrous, L. Wilets, and J. J. Rehr
Department of Physics, Box 351560, University of Washington, Seattle, Washington 98195-1560

~Received 13 April 1998!

Extensions to the finite temperature Green’s-function method for the calculation of equilibrium densities
within the Kohn-Sham formulation of density functional theory are presented. In particular, an expression for
the density in terms of single-particle Green’s-function differences summed over all Matsubara poles is uti-
lized. Numerical methods for the evaluation of this infinite sum are given. This formulation automatically
includes discrete as well as continuum states, is valid for finite temperatures, and is especially well suited for
high temperatures. Techniques are also presented for the calculation of single-particle Green’s functions for
spherically symmetric systems and arbitrary complex energies. The usefulness of these methods is demon-
strated by their application to the problem of electron screening of nuclei in a plasma. Direct comparison is
made with previous finite temperature, Kohn-Sham, wave function type calculations for protons and for neon
nuclei in an electron gas.@S1063-651X~99!07203-7#

PACS number~s!: 52.20.Hv, 31.10.1z, 31.15.Ew
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I. INTRODUCTION

The Kohn-Sham formulation@1# of density functional
theory @2,3# is the modern day descendent of the Hart
approximation@4#. The common goal of these approaches
to represent a solution to the many-body problem in term
single-particle wave functions which are acted upon by
effective potential. These wave functions are typically cal
lated as eigenfunctions of single-particle Schro¨dinger equa-
tions, and their squares are summed to yield the density
the system.

An alternative prescription for the evaluation of the de
sity makes use of single-particle Green’s functions@5#. By
definition these Green’s functions sum over all of the eig
functions for the system, both discrete and continuum. T
are expressed in terms of their spectral representation an
calculated as the solutions of their defining differential eq
tions. In this method, the density is given by an integral
the Green’s function along an appropriate contour in
complex energy plane. It should be noted that the calcula
of the Green’s functions involves one-sided boundary va
problems only and does not require the determination of
genvalues or phase shifts.

A variation of the Green’s-function method for finite tem
peratures has been developed by Dederichs, Zeller, and
collaborators@6–8#. Their approach is limited to relatively
low temperatures, however, due to its dependence on
Sommerfeld expansion@9# for the Fermi occupation factor
For the higher temperatures found in many astrophysical
terrestrial systems, a different implementation of t
Green’s-function method is required. This is the subject
the present work.

In order to extend the method to higher temperatures
alternative contour in the complex energy plane is cho
such that the density is given by a sum of differences
Green’s functions evaluated at all of the Matsubara po
This contour has been considered previously@6#, but it was
not pursued due to two obstacles: the infinite number
poles for which Green’s functions must be calculated and
increasing difficulty in calculating the Green’s functions f
PRE 591063-651X/99/59~3!/3554~8!/$15.00
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Both of these difficulties are surmounted here. First,

number of Green’s functions that are required is limited
extrapolation and interpolation. An asymptotic express
has been derived, which is employed to approximate the s
of Green’s-function differences beyond the last Matsub
pole for which they are calculated. Second, an approach
the evaluation of the high-lying Matsubara poles has b
developed. For large values of the complex energy, the
ferential equations are simplified from second to first ord
by writing the Green’s functions in terms of logarithmic d
rivatives. These derivatives become increasingly smooth
the complex energy increases.

To demonstrate the method’s utility, the electron densit
surrounding protons and neon nuclei embedded in an e
tron gas have been calculated for various temperatures
electron densities. To demonstrate the method’s advanta
the results are compared with previous Kohn-Sham, w
function calculations.

II. DENSITIES VIA CONTOUR INTEGRATION
OF GREEN’S FUNCTIONS

A. The electron density

Making use of the finite temperature generalization
density functional theory due to Mermin@10#, the equilib-
rium densityr(rW) of an interacting, many-electron system
acted upon by an external potentialv(rW), is expressed as

r~rW !5(
i

uf i~rW !u2f ~e i !, ~1!

where the single-particle wave functions satisfy

F2
1

2
¹21veff~rW !Gf i~rW !5e if i~rW !, ~2!

and the effective potential is given by
3554 ©1999 The American Physical Society
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PRE 59 3555GREEN’S-FUNCTION CALCULATION OF ELECTRON . . .
veff~rW !5v~rW !1E d3r 8
r~rW8!

urW2rW8u
1vxc@r~rW !#. ~3!

The Fermi occupation factor,

f ~e!5
1

e~e2m!/T11
, ~4!

depends on the temperatureT and chemical potentialm of
the electrons. The self-consistent solution of these equat
yields the equilibrium density. The sum in the expression
the electron density is over the complete set of energy eig
values, bound and free. Depending on the temperature
density, bound states may or may not exist. Note t
throughout this work atomic units are used (me5e5\5kB
51).

In the above expression, the exchange-correlation po
tial vxc is the temperature dependent functional derivative
the exchange and correlation contributions to the grand
tential. For simplicity, the discussion here is limited to sp
symmetric systems and spin independent exchan
correlation potentials.

B. A nucleus in an electron gas

The following model is considered for the shielding of
nucleus with atomic numberZ in a neutral plasma. The
nucleus is taken to be embedded in a positive jellium a
surrounded by an electron gas with average densityr0 . The
jellium models the remaining nuclei in the plasma and h
charge density equal to the average electron density.

The external potentialv(rW) which acts upon the electron
is due to the nucleus and the jellium. The effective poten
for this problem is thus

v̄eff~rW !52
Z

r
1E r~rW8!2r0

urW2rW8u
d3r 81vxc@r~rW !#2vxc

0 . ~5!

At distances far from the nucleus, the effective potential
proaches that of a uniform electron gasvxc05vxc@r0#. The
bar over the effective potential indicates that this resid
exchange-correlation potential has been removed and tha
barred effective potential vanishes outside the range of
nucleus. The same subtraction is also applied to the eig
values of the single-particle Schro¨dinger equationsē and to
the chemical potential of the electronsm̄.

The average density and the temperature fix the ba
chemical potential in the usual way,

r0~T,m̄ !5
N

V
52E d3p

~2p!3

1

e~p2/22m̄ !/T11
, ~6!

whereN is the number of electrons in a uniform electron g
of volumeV, including a factor of 2 due to spin degenerac

C. The Green’s functions

The single-particle Green’s function associated with
effective potentialv̄eff can be written in terms of its spectra
representation as
ns
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G~rW,rW8;z!5(
i

f i~rW !f i* ~rW8!

z2 ē i

. ~7!

Due to the completeness of the wave functions the Gree
function satisfies

F2
1

2
¹21 v̄eff~rW !2zGG~rW,rW8;z!52d3~rW2rW8!. ~8!

For convenience, the product of the Green’s function a
the Fermi factor, which is written explicitly as a function o
energy and chemical potential, is defined as

G~rW,rW8;z!5G~rW,rW8;z! f ~z,m̄ !. ~9!

The analytic structure of this function is shown in Fig. 1.
has poles at the energy eigenvalues with resid
f i(rW)f i* (rW8) f ( ē i ,m̄). It also has poles at the Matsubara fr
quencies,

zj5m̄6 ip~2u j u21!T, j 561,62,63, . . . ~10!

with residues2TG(rW,rW8;zj ).
The contourA in Fig. 1 encloses the poles at all of th

energy eigenvalues along the real axis, bound and free
shown in Fig. 2, this contour can be deformed into the se
contoursBj , each of which encloses a Matsubara pole, p
the contourC at infinity. The integrals along these contou
are related as follows:

R
A
G~rW,rW8;z!dz52(

j
R

Bj

G~rW,rW8;z!dz1 R
C
G~rW,rW8;z!dz,

~11!

where the minus sign is a result of the direction of integ
tion around the Matsubara poles. The residue theorem ca
applied to yield

r~rW !5T(
j

G~rW,rW;zj !1
1

p i RC
G~rW,rW;z!dz. ~12!

FIG. 1. Contour enclosing the poles inG(rW,rW8;z) at all of the
energy eigenvalues for a nucleus in a finite temperature plasma.
cut along the real axis of course extends to1` but does not con-
tribute for largex in the differenceG2G(0) which vanishes asuzu
→`.
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This expression includes a factor of 2 due to the spin sy
metry of a finite temperature plasma, where all spin states
occupied to some degree.

Note that the integrand does not vanish along the con
C, and the Green’s functions for a uniform system are the
fore required to cancel this integral.

The uniform system in this case is simply a constant e
tron gas of densityr0 plus the jellium background. As a
result, its effective potentialv̄eff

(0)(rW) is zero. For this uniform

system, a Green’s functionG(0)(rW,rW8;z) can be defined in
analogy to Eq.~7!, and a functionG (0)(rW,rW8;z) can similarly
be defined corresponding to Eq.~9!. The density of the uni-
form system can then be expressed in the form of Eq.~12!.

D. The induced density via Green’s-function differences

For large values of the complex energyz, the Green’s
functionsG and G(0) are equal, and the integrals over th
contourC are thus also equal. That the difference of the t
Green’s functions vanishes for large complex energies
shown in a later section of this paper.

If the induced density is defined as

Dr~rW !5r~rW !2r~0!~rW !, ~13!

then it is given by the following sum over Green’s-functio
differences:

Dr~rW !54T(
j 51

`

Re@G~rW,rW;zj !2G~0!~rW,rW;zj !#. ~14!

This result has been simplified using the relati
G(rW,rW;z* )5G* (rW,rW;z), and it is restricted to spin degene
ate exchange-correlation potentials.

This expression for the density requires the Green
function differences for values of the complex energy ra
ing from small to arbitrarily large. For systems such as
single nucleus in a plasma, the Green’s functions are sph
cally symmetric. Techniques are presented in the next
tion which make possible the calculation of these Gree
functions for all values of the complex energy.

FIG. 2. A set of contours equivalent to that of the previo
figure which encloses all of the Matsubara poles and which ha
contour at infinity.
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III. GREEN’S FUNCTIONS FOR SPHERICALLY
SYMMETRIC SYSTEMS

A. The radial Green’s functions

The Green’s function for a spherically symmetric syste
can be written as

G~rW,rW8;z!5
1

2prr 8
(
l 50

`

~2l 11!gl~r ,r 8;z!Pl~cosg!.

~15!

For a given complex energy, a new notation is introduced
the radial Green’s function,

gl ,k~r ,r 8!5gl~r ,r 8;z5k2/2!, ~16!

where the complex wave number is defined ask
5A22z, Re@k#.0. The radial Green’s functions ar
taken to be

gl ,k~r ,r 8!5
c l ,k~r ,!x l ,k~r .!

W@c l ,k ,x l ,k#
. ~17!

Here,Pl is the Legendre polynomial of orderl, andg is the
angle betweenrW and rW8. The functionsc l ,k and x l ,k are
solutions of the radial differential equations

F2
d2

dr2
1

l ~ l 11!

r 2
12v̄eff~r !1k2G H c l ,k~r !

x l ,k~r !
J 50, ~18!

which are regular at the origin and at larger, respectively.
Since the above differential equation has no first-order
rivative, the Wronskian of its solutions,

W@c l ,k ,x l ,k#5c l ,k~r !x l ,k8 ~r !2c l ,k8 ~r !x l ,k~r !, ~19!

is independent ofr. The radial Green’s function satisfies th
inhomogeneous differential equation,

F2
d2

dr2
1

l ~ l 11!

r 2
12v̄eff~r !1k2Ggl ,k~r ,r 8!52d~r 2r 8!.

~20!

B. The radial Green’s functions in terms of known functions

Depending on their complex energy, the radial Gree
functions are calculated using two different methods. T
first approach makes use of known functions to remove
dominant behaviors from the solutions of the radial eq
tions,c l ,k andx l ,k .

Near the origin, the differential equations for the rad
solutions are dominated by the Coulomb potential of
nucleus and by the centrifugal potential. Therefore, the pr
uct forms of the solutions in this region are taken to be

c l ,k~r !5Fl~h,p!c l ,k~r !, ~21!

x l ,k~r !5Hl
~1 !~h,p!x l ,k~r !, ~22!

whereFl andHl
(1) are Coulomb wave functions of the firs

and third kind@11,12#, which are regular at the origin and a
large r, respectively, whereh5 iZ/k, and wherep5 ikr .

a
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Far from the origin, the screening of the electrons cau
the effective potential to vanish. As a result, the radial so
tions there should be similar in form to those of a syst
with no central nucleus. The product forms of the solutio
in this region are thus taken to be

c l ,k~r !5c l ,k
~0!~r !c l ,k~r !, ~23!

x l ,k~r !5x l ,k
~0!~r !x l ,k~r !, ~24!

wherec l ,k
(0) andx l ,k

(0) are the radial solutions for the uniform
system. The uniform radial solutions satisfy Eq.~18! when
its effective potential is set to zero, and they are related to
spherical Bessel functions of the first and third kind@11,13#
by

c l ,k
~0!~r !5r j l~ ikr !, ~25!

x l ,k
~0!~r !5rhl

~1!~ ikr !. ~26!

For both regions, the barred functions are calculated
numerical integration of the differential equations which fo
low from the substitution of the above product forms into E
~18!. The Coulomb wave functions and spherical Bes
functions, on the other hand, are evaluated using comp
routines@11,14# available from the CERN program librar
@15#.

C. The radial Green’s functions
in terms of logarithmic derivatives

As the complex energy values in Eq.~29! increase, the
methods of the preceding section become increasingly m
difficult to evaluate, and a second method for numerica
calculating the radial Green’s functions is needed. A n
approach is introduced here which makes use of logarith
derivatives and which becomes more efficient asz increases.

This approach makes use of the following relations
between the logarithmic derivatives of the radial solutio
c l ,k andx l ,k :

S x l ,k8 ~r !

x l ,k~r !
D 2S c l ,k8 ~r !

c l ,k~r !
D 5

W@c l ,k ,x l ,k#

c l ,k~r !x l ,k~r !
. ~27!

This expression follows from the definition of the Wrons
ian, Eq.~19!, and its right hand side is just the reciprocal
the radial Green’s function evaluated forr 5r 8. The Green’s
function can therefore be calculated in terms of differen
of logarithmic derivatives,

gl ,k~r ,r !5F S x l ,k8 ~r !

x l ,k~r !
D 2S c l ,k8 ~r !

c l ,k~r !
D G21

. ~28!

Both logarithmic derivatives can be shown to satisfy t
nonlinear, first-order differential equation

d

drS c l ,k8 ~r !

c l ,k~r !
D 5F l ~ l 11!

r 2
12v̄eff~r !1k2G2S c l ,k8 ~r !

c l ,k~r !
D 2

.

~29!
s
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This transformation of a differential equation from second
first order by means of the logarithmic derivative of its s
lutions is due to Riccati@16#. At the origin and at larger they
behave as

S c l ,k8 ~r !

c l ,k~r !
D→H ~ l 11!/r for r→0

1k for ukr u→`,
~30!

S x l ,k8 ~r !

x l ,k~r !
D→H 2 l /r for r→0

2k for ukr u→`.
~31!

Whereas the asymptotic forms of the radial solutions beco
more and more oscillatory as the complex energy increa
the logarithmic derivatives are more slowly varying in th
limit, approaching values of6k.

The work required for the calculation of the logarithm
derivatives is simplified in the same manner as is used
small values of the complex energy. That is, the radial grid
divided into two regions, and the leading order behaviors
the logarithmic derivatives in each region are extracted. T
leaves well behaved functions to be calculated numerica

IV. EVALUATION OF THE DENSITY

A. The spherically symmetric density

For spherically symmetric systems, the density is e
panded in terms of contributions from the angular mom
tum components of the Green’s functions,

Dr~r !5
1

r 2 (
l 50

`

Dr l~r !. ~32!

Substitution of the spherically symmetric Green’s functio
Eq. ~15!, into the density expression, Eq.~14!, shows that the
induced density components are

Dr l~r !5
2~2l 11!

p
T(

j 51

`

Re@Dgl ,k j
~r ,r !#, ~33!

where

Dgl ,k~r ,r 8!5gl ,k~r ,r 8!2gl ,k
~0!~r ,r 8!. ~34!

As written, the induced density involves a sum
Green’s-function differences evaluated for an infinite num
of Matsubara poles. In practice, the number of Green’s fu
tions that can be calculated is finite, and extrapolation a
interpolation are used to evaluate the complete sum.

Let M be the index of the largest polezM for which the
Green’s functions are calculated. The sum of the Gree
functions for poles beyond this maximum polezM is ap-
proximated by extrapolation of an asymptotic expression
the Green’s-function differences. This expression is deriv
below.

B. An asymptotic expression for the radial Green’s functions

The centrifugal and effective potentials in Eq.~20! are
combined to form a total potential
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Vl~r !5
l ~ l 11!

r 2
12v̄eff~r !. ~35!

Let g̃k be the solution of Eq.~20! for the case where the tota
potential Vl is zero. This Green’s function has the we
known form @17#

g̃k~r ,r 8!52
e2kur 2r 8u

2k
. ~36!

The Born series@18# for the radial Green’s functiongl ,k in
terms ofg̃k can be written symbolically as

gl ,k5g̃k1E g̃kVlg̃k1E E g̃kVlg̃kVlg̃k1•••. ~37!

This expression can be evaluated forr 85r to give

gl ,k~r ,r !52
1

2k
1

Vl~r !

4k3
2

3Vl
2~r !2Vl9~r !

16k5

1OS 1

k7
,
e22kr

k3 D . ~38!

For the remainder of this discussion, terms of ord
k23e22kr , or less, are neglected.

The first three terms in this expression can be used
approximate the radial Green’s function for large values
k. Each term in the expression is smaller than the previ
by a factor which is essentially of the order ofVl(r )/k2.
Thus, the expression is only convergent for those valuesr
where k2 dominatesVl(r ) in the differential equation. In
other words, for a givenk value, Eq.~38! is a useful repre-
sentation of the radial Green’s function,gl ,k , only in those
regions where the differential equations forgl ,k and g̃k are
nearly the same, and hence wheregl ,k is accurately given by
g̃k plus a few correction terms.

C. A previous expression

It should be noted that Kohn and Sham@19# have also
considered the Born series for Green’s functions, Eq.~37!,
for the case of a general one-dimensional potentialV(r ).
Their result for the Green’s function differs from Eq.~38! in
that it contains an extra term of orderk24, which depends on
the first derivative of the potential.

The source of the derivatives in Eq.~38! is the Taylor
expansion of the potentialV aboutr. It can be shown that the
term coming from the first derivative gives a contribution
the integrals in Eq.~37! that is of orderk23e22kr . For large
k this term is negligible, and the asymptotic expression
the radial Green’s function in Eq.~38! is therefore correct.

The validity of Eq.~38! can also be demonstrated by e
plicit construction of the asymptotic form of the uniform
radial Green’s functiongl ,k

(0)(r ,r ) using known forms for the
spherical Bessel functions.
r

to
f
s

f

r

D. Limiting the number of calculated Green’s functions

The difference in Green’s functions is the quantity of i
terest in this calculation. Since the asymptotic expression
the uniform radial Green’s functiongl ,k

(0)(r ,r ) is just Eq.~38!
evaluated with the total potentialVl

(0) , the radial Green’s-
function difference is given by

Dgl ,k~r ,r !5
a~r !

k3
1

bl~r !

k5
1OS 1

k7D , ~39!

where

a~r !5
1

2
v̄eff~r !, ~40!

bl~r !52
3

4F v̄eff
2 ~r !1

l ~ l 11!

r 2
v̄eff~r !G1

1

8
v̄eff9 ~r !. ~41!

It should be noted that the leading order term in t
Green’s-function differences depends on the effective po
tial v̄eff and not on the total potentialVl . Taking the differ-
ence of the Green’s functions cancels their common centr
gal barriers. This result shows that the difference of
Green’s functions goes to zero more rapidly than the Gree
functions themselves. It also verifies the conjecture of S
II D that the difference of the Green’s function vanish
along the contourC, where the complex energyz, and thus
k, go to infinity.

The sum of the Green’s-function differences beyond
last Matsubara pole for which they are calculated,zM is ex-
trapolated using Eq.~39! and the value calculated for th
Green’s-function difference atzM . That is, the sum over
Green’s-function differences beyond the last calculated p
is approximated by

(
j 5M11

`

Re@Dgl ,k j
~r ,r !#

' (
j 5M11

`

ReFa~r !

k j
3

1
bl~r !

k j
5

1
cl~r ;zM !

k j
7 G , ~42!

where the coefficientcl is determined from the Green’s
function difference atzM ,

Dgl ,kM
~r ,r !5

a~r !

kM
3

1
bl~r !

kM
5

1
cl~r ;zM !

kM
7

. ~43!

The sum of the extrapolated Green’s-function differences
Eq. ~42! is evaluated using the Euler-Maclaurin summati
formula @20#.

Consider the choice ofzM . For particular values ofl and
r , zM must be large enough that the asymptotic forms
Eq. ~39! can be used to extrapolate the Green’s-function d
ferences. At lower temperature, the value ofM will be much
higher, because the separation of the poles is proportion
T, Eq. ~10!. In general, then, the lower the temperature,
more poles that will be needed, and the more Green’s fu
tions which must be evaluated.
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In order to limit the number of poles for which Green
functions must be calculated, the sum of theM radial
Green’s-function differences up tozM is also approximated
in this calculation. Specifically, the Green’s-function diffe
ences are calculated for some of the poles and their va
for the remaining poles are determined by interpolation. T
is feasible because the radial Green’s-function differen
are very well behaved as functions of the complex energz.
The interpolation scheme that is used most heavily wei
those values of the complex energyz close to the real axis
For larger values ofz, the Green’s-function differences ap
proach their asymptotic forms and thus require fewer ca
lated values for accurate interpolation.

Further details concerning the evaluation of the den
are given elsewhere@21#.

E. Asymptotic expressions for the logarithmic derivatives

The analysis of the asymptotic forms for the logarithm
derivatives of the radial solutions parallels that of the prec
ing section. In this case, the asymptotic forms are

S c l ,k8 ~r !

c l ,k~r !
D 51k1

Vl~r !

2k
2

Vl8~r !

4k2

2
Vl

2~r !2Vl9~r !

8k3
1OS 1

k4D ~44!

and

S x l ,k8 ~r !

x l ,k~r !
D 52k2

Vl~r !

2k
2

Vl8~r !

4k2

1
Vl

2~r !2Vl9~r !

8k3
1OS 1

k4D . ~45!

Note that most of these terms are of opposite sign, excep
the first derivatives. As a check, these forms for the logar
mic derivatives can be substituted into the radial Gree
function of Eq. ~28! to reproduce its asymptotic form, Eq
~38!.

These expressions are used to speed the computatio
the logarithmic derivatives in those regions whereVl(r ) is
small compared tok.

V. NUCLEI IN AN ELECTRON GAS

A. A proton in an electron gas

The Green’s-function method of this paper is now appl
to the problem of the screening of nuclei in an electron g
Electron densities calculated using the Green’s-funct
method are compared with densities calculated using Ko
Sham wave function techniques.

For the case of the screening of a proton, compariso
made with a calculation due to Perrot@22#. The parameters
which were considered by Perrot are listed in Table I, and
results from the two methods are shown in Table II. T
induced electron density values at the origin are given, al
with the inverse screening length implied by the density d
tribution. The first set of values are the results calcula
es
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s
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or
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’s

of

d
s.
n
n-
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e
e
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using the Green’s-function method. The second set cont
the values due to Perrot.

In both cases, the local density approximation is made
the temperature dependent exchange-correlation potentia
ing a parametrization due to Perrot and Dharma-ward
@23#. The correlation contributions to the grand potential
this parametrization are treated via the random phase
proximation.

The inverse screening lengthk, not to be confused with
the wave vector, is introduced here for the purpose of co
parison with Perrot. If the induced density is assumed to
of the form

Dr~r !5
Zk2

4pr
e2kr, ~46!

then the total induced charge inside a sphere of radiusR0
52/k is

E
0

R0
Dr~r !4pr 2 dr50.594Z. ~47!

TABLE I. Parameters used in Perrot’s proton calculation. A
values are in atomic units, wherer051.0 a.u. is equal to
6.75 electrons Å23 andT51.0 a.u. is equal to 3.163105 K. The

chemical potentialm̄ is calculated with the residual exchang
correlation potential removed.

r s t5T/TF r0 T TF m̄

1.0 0.5 0.239 0.921 1.842 1.3685
1.0 1.0 0.239 1.842 1.842 20.0395
1.0 2.0 0.239 3.683 1.842 24.5329
2.0 0.5 0.0298 0.230 0.460 0.34213
2.0 1.0 0.0298 0.460 0.460 20.00988
2.0 2.0 0.0298 0.921 0.460 21.13323
4.0 0.5 0.00373 0.0575 0.1151 0.08553
4.0 1.0 0.00373 0.1151 0.1151 20.00247
4.0 2.0 0.00373 0.2302 0.1151 20.28331

TABLE II. The induced electron density at the protonDr(0)
and the inverse screening lengthk calculated using the Green’s
function method, and the same quantities for the standard den
functional calculation due to Perrot.

This work Perrot
r s t Dr(0) k Dr(0) k

1.0 0.5 0.853 1.633 0.841 1.623
1.0 1.0 0.695 1.285 0.682 1.276
1.0 2.0 0.498 0.922 0.486 0.928
2.0 0.5 0.435 1.460 0.428 1.454
2.0 1.0 0.357 1.134 0.349 1.114
2.0 2.0 0.240 0.741 0.235 0.729
4.0 0.5 0.335 1.426 0.338 1.426
4.0 1.0 0.309 1.275 0.306 1.266
4.0 2.0 0.232 0.878 0.222 0.839
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For each induced electron density, the value ofR0 is deter-
mined by Perrot such that the above relationship is satisfi
This in turn defines an inverse screening length value for
density.

The values calculated with the Green’s-function meth
can be seen to be in good agreement with those calculate
Perrot. The agreement is stronger for the inverse scree
length values than for the induced density values at the
gin, which are systematically greater in the Green’s-funct
calculation. The induced density at the origin does not m
significant contributions to the total Coulomb potential of t
electrons. Its exact value there is less important than
density values away from the origin.

At low temperatures, the electron density around the p
ton exhibits Friedel oscillations@24#. The effect is stronges
at zero temperature where there is a sharp cutoff in allow
momentum at the Fermi energy, in which case a smo
density distribution cannot be formed. As the temperatur
increased, the oscillations disappear. The parameters
which Friedel oscillations were found to exist can be seen
Table III. The oscillations were exhibited for the same p
rameters in both the Green’s-function calculation and in P
rot’s. The quantityr node is the first node in the induced den
sity, i.e., the first point where the induced density is zero

As shown in Table III, the positions of the first nodes a
in good agreement forr s54.0. The induced density values
the first minimumDrmin /r0 are also similar forr s54.0 and
t50.5. Note that the other two minimums occur further o
in the tail, where the induced density is small relative to
average value. If the induced density at each minimum
compared to the induced density at the origin, their relat
values are even smaller. Differences in the values calcul
with the two methods in this region are not significant.

B. A neon nucleus in an electron gas

The screening of a neon nucleus in an electron gas
also been studied by Perrot@25#. The larger charge of neon
Z510, makes for more polarization and a more stringent
of the Green’s-function method.

The induced electron density values at the origin
shown in Table IV along with two quantitiesR0 and R1 ,
which measure the charge distribution around the nucle
The first set of numbers are those calculated with
Green’s-function method, and the second set was calcul
by Perrot. The quantityR0 was defined in Eq.~47! as the
radius of a sphere containing charge 0.549Z. For the neon
calculation, Perrot defined a new variableR1 , which is the

TABLE III. Parameters for which Friedel oscillations wer
found. The first node of the oscillationr nodeis shown along with the
first induced density minimum, scaled by the average electron d
sity, Drmin /r0 . The data are from the Green’s-function method a
from Perrot.

This work Perrot
r s t r node Drmin /r0 r node Drmin /r0

2.0 0.5 8.48 21.2531026 10.7 28.731028

4.0 0.5 3.50 27.5531022 3.48 27.831022

4.0 1.0 5.51 22.0031023 5.56 25.431024
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radius where the induced density is equal to half the aver
density,Dr(R1)5r0/2.

As with the results for the screening of a proton, the va
ables describing the extent of the charge are in better ag
ment than the induced density values at the origin. T
agreement of the charge distribution results improves as
temperature is raised.

C. The method has no problems with bound states
or high temperatures

In a Kohn-Sham wave function type calculation, the r
dial components of the single-particle eigenfunctions
found as solutions of the single-particle Schro¨dinger equa-
tion, Eq.~2!. In the case of nuclei with large atomic numbe
there are many bound states to be found. In addition, for
nuclei there are shallow bound states at high temperat
and low densities.

The first difficulty presented by bound states is that th
must be found. Since many of the eigenvalues can h
small occupation factors, determining them can be diffic
A second problem posed by bound states stems from the
that the density must be iterated until a self-consistent s
tion is found. In Perrot’s neon calculation, for examp
bound states were found to pop in and out of the continu
as the effective potential varied.

Bound states pose no such problem in the Gree
function method. The single-particle Green’s function d
fined in Eq.~7! contains bound and continuum wave fun
tions by construction. Thus, the bound states are inclu
automatically with every iteration, and they do not need to
found separately before they can be included in the result
the density.

An interesting question to ask with regards to the iterat
of the density and the Green’s-function method is if the ho
ping of loosely bound states in and out of the continuum c
lead to the same numerical problems described by Pe
The answer has been given by Kohn and Majumdar@26#,
who showed that the properties of a Fermi gas, such as
density, are smooth or analytic for just such a transition o
state from bound to unbound. The instabilities in Perro
calculation might therefore be attributed to the difficulties
locating all of the bound states for each iteration.

Not only are bound states handled easily with t
Green’s-function method, but high temperatures are also
a problem. In a standard Kohn-Sham calculation, the exp
sion for the density includes an integral over continuu

n-

TABLE IV. The induced electron density at the neon nucle
Dr(0) and the variablesR0 , R1 for an electron gas with Wigner
Seitz radiusr s52.0, calculated using the Green’s-function meth
and the same quantities for the standard density functional calc
tion due to Perrot.

This work Perrot
t Dr(0) R0 R1 Dr(0) R0 R1

0.5 591.6 0.835 1.891
1.0 557.7 0.868 2.133 592.3 0.867 2.069
2.0 496.1 1.004 2.264 590.9 1.003 2.259
4.0 489.4 1.879 2.335 468.2 1.842 2.362
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wave functions. In order to evaluate the density at hig
temperatures, the number of wave vectors for which the c
tinuum wave functions must be calculated increases. Furt
more, the calculation of the wave functions becomes m
difficult as the wave functions become more oscillato
Thus, for a traditional wave function type calculation, high
temperatures equate to more work, which puts practical l
its on the temperature range where the method can be u

For the Green’s-function method, on the other ha
higher temperatures present no such obstacles. Larger
peratures mean a greater distance between Matsubara p
Eq. ~10!, which makes for faster convergence of the su
over these poles in Eq.~33!. In addition, the Green’s-
function method avoids the difficulties of rapidly oscillatin
solutions by the use of logarithmic derivatives of the rad
solutions, Eq.~28!. The larger the complex wave numberk,
the more well behaved the logarithmic derivatives becom
Eqs.~30! and ~31!.

VI. SUMMARY AND CONCLUSIONS

The screening of nuclei by electrons in a finite tempe
ture plasma is considered using the Kohn-Sham formula
of density functional theory, with a local density term
describe exchange and correlation.

Rather than calculating single-particle wave functions,
problem is developed in terms of Green’s functions wh
are evaluated at Matsubara poles lying along a line para
to the imaginary axis. A finite number of poles is evaluat
and the infinite sum required for the calculation of electr
s

r:
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les,
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n

densities is effected by extrapolation and interpolatio
Bound states are automatically included, which elimina
the numerical instabilities in wave function methods.

For complex energies close to the real axis, the inner
outer factors of the Green’s function are obtained by dir
integration. For energies far from the real axis, logarithm
derivatives of the factors are calculated, which is all tha
required for the evaluation of the density. These logarithm
derivatives satisfy first-order differential equations and
smooth functions which actually become better behaved
the complex energy increases in magnitude. This obvia
the problem of rapidly oscillating functions in the wave fun
tion formulation. The method is applicable to all temper
tures, and converges especially well at high temperature

Numerical results are presented for protons and neon
clei. Comparisons to earlier works by Perrot using a wa
function formulation are given.

An important application of the method is evaluation
the effect of shielding on thermonuclear fusion rates in la
ratory and stellar plasmas. A paper@27# is in preparation
giving results for the solar core; it also incorporates the eff
of shielding by the other positive nuclear constituents in
plasma.
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